Abstract

The VIII/VII phase boundaries of solid H2O and D2O were studied by means of differential thermal analysis. The thermal hysteresis of the transition decreases with increasing pressure, but the presumed equilibrium temperatures are independent of pressure to 40 kbar. The transition is of the first order, and the average transition temperature is −3°C in both cases. The ice VI/VII transition pressure at 25°C is 21.39 ± 0.05 kbar, in good agreement with other recent studies, but considerably lower than Bridgman's value. The heavy ice VI/VII and VI/VIII transition lines are located ∼1.4 kbar below the ice VI/VII and VI/VIII transition lines. The heavy ice VI/VII transition at 25°C occurs at 19.90 ± 0.07 kbar. Bridgman's melting curves of ice VI and ice VII are shown to be correct. The melting curve of heavy ice VI is ∼2°C above that of ice VI, but the heavy-ice VI/VII/liquid triple point is located at 78°C, 20.6 kbar as compared with 81.6°C, 21.97 kbar for H2O. The melting curve of heavy ice VII appears to have a stronger curvature than the melting curve of ice VII.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.