Abstract

In this work, we have predicted and classified the temperature-misfit strain phase diagrams of (001)-oriented K1 − xNaxNbO3 (KNN, 0 ≤ x ≤ 0.5) thin films using three classical machine learning algorithms: k-nearest neighbors, support vector machine, and deep neural networks, which have a very excellent prediction accuracy rate of about 99%. Furthermore, various physical properties including ferroelectric, dielectric, piezoelectric, and electrocaloric properties have been calculated and studied based on the phenomenological Landau–Devonshire theory. The calculated results show that the dielectric constant ɛ33, piezoelectric coefficient d33, and isothermal entropy change ΔS of the KNN thin films can be enhanced at the orthorhombic–rhombohedral phase boundary. This work will provide theoretical guidance for experimental studies of KNN thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.