Abstract
The concentration and temperature ranges of liquid crystal and glass formation in binary systems of cobalt (II) caprylate with either lithium or lead caplylates have been studied by differential thermal analysis and optical polarization microscopy. Absorption spectra of Co(II) cations in mesophases and glasses of these binary caprylate systems have been analyzed as a function of temperature and composition to get information on the coordination of Co(II) ions. For the binary system of lead–cobalt caprylate, we found that the Co(II) ions are octahedrally coordinated over the range of temperatures and compositions studied, whereas in the binary lithium–lead caprylate system, the Co(II) ions can exist in both octahedral and tetrahedral coordination depending on composition and temperature. Thermochromic behavior was observed for all compositions studied here, from blue to violet and pink, depending on the composition and temperature of the system studied. An unusual increase of optical density with decreased Co(II) ion concentration has been observed for the Co–Li caprylate binary system up to 50 mol%. An increasingly ionic Co(II) coordination environment as Li ion concentration increases facilitates a concomitant increase in the proportion of more optically dense tetrahedrally coordinated Co(II) ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.