Abstract
The phase diagrams and elastic properties of the Fe-Cr-Al alloys in full-temperature and all-compositional ranges are calculated. By combining first-principles calculations and cluster variation method, binary and ternary phase diagrams are obtained. A new ternary ordered phase B32 which is different from ternary extension of binary phases appears in the ternary section around temperature of 600 K. The binary FeAl phases show an extremely high solubility for Cr, while the binary CrAl phase solid solution has a low solubility for Fe. By combining first-principles calculations and cluster expansion method, the bulk modulus, shear modulus and Poisson's ratio are calculated. The shear modulus and Poisson's ratio show a strong ordering dependency, while the ordering dependency in bulk modulus is weak. Disordered Fe-Cr alloys with a little Al solvent shows ductile property, the Al-rich corner has brittle property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.