Abstract

Phase equilibria in the TbBr3-RbBr binary system were established from differential scanning calorimetry (DSC) measurements. This binary system is characterized by two compounds, namely Rb3TbBr6 and RbTb2Br7, and two eutectics located at the TbBr3 mole fractions, x = 0.117 (728 K) and x = 0.449 (718 K), respectively. Rb3TbBr6 undergoes a solid-solid phase transition at 728 K and melts congruently at 1047 K with the related enthalpies 7.8 and 58.7 kJ mol(-1), respectively. RbTb2Br7 melts incongruently at 803 K. It undergoes also a solid-solid phase transition at 712 K, a temperature very close to that (718 K) of the second eutectic, and much attention was paid in evidencing and separating these transition and eutectic effects. Separate investigations of the thermodynamic and transport properties were performed on the Rb3TbBr6 compound. These heat capacity and electrical conductivity experimental results suggest an order-disorder mechanism in the alkali-metal cation sublattice whereas the TbBr6 octahedra, forming the anionic sublattice, retain their normal lattice positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call