Abstract
By using the bosonization approach and the renormalization group (RG) technique, we study the half-filled band one-dimensional t–U–J model with additional on-bond repulsion (W>0) in the weak-coupling regime. The presence of on-bond repulsion is responsible for realization of a metallic phase in the system, and the phase diagram is strongly controlled by the symmetry of the model. By analyzing the RG flow diagram and comparing order parameters, the phase boundaries are determined and the structure of the phase diagram is clarified. In the case of SU (2) ⊗ SU (2) symmetry, the phase diagram consists of a metallic phase characterized by a Luttinger liquid (LL) and two insulting phases characterized by the degenerate spin-density-wave (SDW) and the bond-charge-density-wave (BCDW). In the SU (2) ⊗ U(1)-symmetric case, the phase diagram contains two metallic phases: a LL and a Luther–Emery phase, and three insulating phases: the transverse SDW ( SDW ±), the longitudinal SDW ( SDW z) and the dimerized BCDW. The insulating charge-density-wave and bond-spin-density-wave (BSDW) phases are always suppressed in the ground state. In addition, the system show a long-ranged order in the BCDW and SDW z phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.