Abstract

Motivated by the current interest in the quantum dimer model on the triangular lattice, we investigate the phase diagram of the closely related fully frustrated transverse-field Ising model on the honeycomb lattice using classical and semiclassical approximations. We show that, in addition to the fully polarized phase at a large field, the classical model possesses a multitude of phases that break the translational symmetry which, in the dimer language, correspond to a plaquette phase and a columnar phase separated by an infinite cascade of mixed phases. The modification of the phase diagram by quantum fluctuations has been investigated in the context of linear spin-wave theory. The extrapolation of the semiclassical energies suggests that the plaquette phase extends down to zero field for spin 1/2, in agreement with the $\sqrt{12}\ifmmode\times\else\texttimes\fi{}\sqrt{12}$ phase of the quantum dimer model on the triangular lattice with only kinetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.