Abstract

Motivated by recent experiments on toroidal Bose-Einstein condensates in all-optical traps with tunable weak links, we study the one-dimensional Bose-Hubbard model on a ring-shaped lattice with a small region of weak hopping integrals using quantum Monte Carlo simulations. Besides the usual Mott insulating and superfluid phases, we find a phase which is compressible but non superfluid with a local Mott region. This `local Mott' phase extends in a large region of the phase diagram. These results suggest that the insulating and conducting phases can be tuned by a local parameter which may provide a new insight to the design of atomtronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.