Abstract

We present temperature dependent resistivity and ac-calorimetry measurements of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a liquid medium and in a diamond anvil cell using argon as a pressure medium, respectively. We observe an initial increase of the ferromagnetic transition temperature Tc with pressures up to 4.5 GPa, followed by decrease of Tc on further increase of pressure and finally its disappearance, in agreement with the Doniach model. We infer a ferromagnetic quantum critical point around 7 GPa under hydrostatic pressure conditions from the extrapolation to 0 K of Tc and the maximum of the A coefficient from low temperature fits of the resistivity \rho (T)=\rho_{0}+AT^{n}. No superconductivity under pressure was observed down to 0.35 K for this compound. In addition, differences in the Tc(P) behavior when a slight uniaxial component is present are noticed and discussed and correlated to choice of pressure medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call