Abstract
Cerium diantimonide ($\mathrm{Ce}{\mathrm{Sb}}_{2}$) is one of a family of rare-earth-based magnetic materials that exhibit metamagnetism, enabling control of the magnetic ground state through an applied magnetic field. At low temperatures, $\mathrm{Ce}{\mathrm{Sb}}_{2}$ hosts a rich phase diagram with multiple magnetically ordered phases for many of which the order parameter is only poorly understood. In this paper, we report a study of its metamagnetic properties by scanning tunneling microscopy (STM) and magnetization measurements. We use STM measurements to characterize the sample magnetostriction with subpicometer resolution from magnetic field and temperature sweeps. This allows us to directly assess the bulk phase diagram as a function of field and temperature and relate spectroscopic features from tunneling spectroscopy to bulk phases. Our magnetostriction and magnetization measurements indicate that the low-temperature ground state at zero field is ferrimagnetic. Quasiparticle interference mapping shows evidence for a reconstruction of the electronic structure close to the Fermi energy upon entering the magnetically ordered phase.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.