Abstract

We study a spin-ice Kondo lattice model on a breathing pyrochlore lattice with classical localized spins. The highly efficient kernel polynomial expansion method, together with a classical Monte Carlo method, is employed in order to study the magnetic phase diagram at four representative values of the number density of itinerant electrons. We tune the breathing mode by varying the hopping ratio -- the ratio of hopping parameters for itinerant electrons along inequivalent paths. Several interesting magnetic phases are stabilized in the phase diagram parameterized by the hopping ratio, Kondo coupling, and electronic filling fraction, including an "all-in/all-out" ordered spin configuration phase, spin-ice, ordered phases containing $16$ and $32$ spin sites in the magnetic unit cell, as well as a disordered phase at small values of the hopping ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.