Abstract

Ising machines have emerged as promising solvers for combinatorial optimization problems in recent years. In practice, these problems are often mapped into a frustrated Ising model due to randomness or competing interactions, which reduces the success ratio for finding the optimal solution. In this study, we simulate one-dimensional and two-dimensional frustrated Ising models in an Ising machine based on the optoelectronic oscillator. Our experiment aims to show the relationship between the Fourier mode of the coupling matrix and the spin distribution under frustration. The results prove the validity of the theoretical predictions and provide insights into the behavior of Ising machines in the presence of frustration. We believe it would help to develop a better strategy to improve the performance of Ising machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call