Abstract

The Harper equation arising out of a tight-binding model of electrons on a honeycomb lattice subject to a uniform magnetic field perpendicular to the plane is studied. Contrasting and complementary approaches involving von Neumann entropy, fidelity, fidelity susceptibility, and multifractal analysis are employed to characterize the phase diagram. Remarkably even in the absence of the quasi-periodic on-site potential term, the Hamiltonian allows for a metal-insulator transition. The phase diagram consists of three phases: two metallic phases and an insulating phase. A variant model where next nearest neighbor hopping is included, exhibits a mobility edge and does not allow for a simple single phase diagram characterizing all the eigenstates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.