Abstract
Low-temperature activation of quartz and kaolin, two of the most abundant and affordable raw materials as the sources of alumina and silica for the production of zeolites, is highly desirable but is hampered by several challenges such as incomplete activation and the formation of acid-resistant aluminosilicates. In this paper, the hydrothermal alkali activation processes of kaolin and quartz with different Si/Al ratios have been studied in detail, aiming to establish a phase diagram for the optimal digestion of silica and alumina. The effects of the Si/Al ratio, reaction time, reaction temperature, alkali concentration, and doses of hydrothermal alkali activation have been thoroughly investigated and optimized. Sodalite, hydroxycancrinite and analcime are found to be the dominant aluminosilicates as activation products. This is the first demonstration that the molar ratio of NaOH/(Si + Al) is the key factor in controlling the formation of aluminosilicates. The establishment of this phase diagram allows us to avoid the formation of troublesome analcime, and it can be used for effectively converting most natural aluminosilicate materials into sol-gel as platform chemicals for the synthesis of zeolites and other aluminosilicate derivatives.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.