Abstract

In this work we study the phase diagram of Kekul\'{e}-Kitaev model. The model is defined on a honeycomb lattice with bond dependent anisotropic exchange interactions making it exactly solvable in terms of Majorana representation of spins in close analogy to the Kitaev model. However, the energy spectrum of Majorana fermions has a multi-band structure characterized by Chern numbers 0, $\pm$1, and $\pm2$. We obtained the phase diagram of the model in the plane of exchange couplings and in the presence of a magnetic field and found chiral topological and trivial spin-liquid ground states. In the absence of magnetic field most part of the phase diagram is a trivial gapped phase continuously connected to an Abelian phase, while in the presence of the magnetic field a topological phase arises. Furthermore, motivated by recent thermal measurements on the spin-liquid candidate $\alpha$-RuCl$_{3}$, we calculated the thermal Hall conductivity at different regimes of parameters and temperatures and found the latter is quantized over a wide range of temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.