Abstract

In a ferromagnet/heavy-metal bilayer device with strong spin Hall effect an in-plane current excites magnetic dynamics through spin torque. We analyze bilayers with perpendicular magnetization and calculate three-dimensional phase diagrams describing switching by external magnetic field at a fixed current. We then concentrate on the case of a field applied in the plane formed by the film normal and the current direction. Here we analytically study the evolution of both the conventional "up"/"down" magnetic equilibria and the additional equilibria created by the spin torque. Expressions for the stability regions of all equilibria are derived, and the nature of switching at each critical boundary is discussed. The qualitative picture obtained this way predicts complex hysteresis patterns that should occur in bilayers. By analyzing the phase portraits of the system we show that when the spin torque induced equilibrium exists, switching between "up" and "down" states proceeds through it as an intermediate state. Using numeric simulations we analyze the switching time and compare it to that of a conventional spin torque device with collinear magnetizations of the polarizer and the free layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.