Abstract

We present a triangular triple quantum dot (TTQD) system with two dots connected parallelly to one conduction lead, and investigate the phase diagram, the electric transport, and the temperature-dependent magnetic moment at half filling. When the hopping between two connected dots t12 = 0, and those between the connected dots and the side dot are symmetric t13 = t23, two connected dots form a spin triplet due to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction mediated by the dot-lead coupling and/or the hopping t13 (t23). For t13 = 0, the triplet is partially screened by the conduction leads at low temperature. Both the connected dots and the side dot contribute to the magnetic moment of the system. For any definite t13, the triplet is totally screened by the conduction leads and the side dot, and the two-stage Kondo effect occurs. When t12 increases beyond a critical t12c, two connected dots form a spin singlet and decouple from the side dot. In this case, the Kondo peak is strongly suppressed, indicating zero conductance, and only the localized side dot contribute to the magnetic moment at low temperature. When t13 ≠ t23, we find a crossover as t12 increases, contrast to the first order transition of the symmetric case. Numerical renormalization group technique and physical arguments are used to obtain a detailed understanding of these problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call