Abstract
We study the critical properties of the antiferromagnetic spin-1/2 Ising model in an external field on the square lattice. Using tomographic entropic sampling, a flat-histogram simulation method, we estimate the number of configurations, , and related microcanonical averages in the energy-magnetization space, for system sizes L = 10–30. The critical line and exponents are calculated using finite-size scaling analysis in the temperature-external field plane. With these estimates in hand, we perform detailed studies of critical behavior using Metropolis sampling of larger systems (). These results are compared to several approximate theoretical methods. Our estimates of critical exponents and Binder’s reduced fourth cumulant along the critical line are in very good agreement with their respective literature values for the two-dimensional Ising universality class. We verify as well that the specific heat scales along the critical line, as expected for an Ising-like critical point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.