Abstract

We propose a theoretical description of the phase diagram and physical properties in A(2)Fe(4)Se(5)-type (A=K, Tl) compounds based on a coexistent local moment and itinerant electron picture. Using neutron scattering and angle-resolved photoemission spectroscopy measurements to fix the general structure of the local moment and itinerant Fermi pockets, we find a superconducting phase with s-wave pairing at the M pockets and an incipient sign-change s wave near the Γ point, which is adjacent to the insulating phases. The uniform susceptibility and resistivity are found to be consistent with the experiment. The main distinction with iron pnictide superconductors is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call