Abstract

The down-looking synthetic aperture imaging ladar (SAIL) with electro-optic modulation was proposed. The measurement uses electrically controlled scanner to produce beams with spatial parabolic phase difference, which consists of electro-optic crystal and cylindrical lens. Due to the high modulation rate without mechanical scanning, this technique has a great potential for applications in extensive synthetic aperture imaging ladar fields. The phase mapping of electrically controlled scanner under the different applied voltage is achieved and measured by the polarized digital holographic interferometry. The phase mappings of the scanner in the down-looking SAIL with the o-polarized light and e-polarized light are obtained. The linear phase distribution and the parabolic phase distribution are observed after applying the external electric field. The corresponding analyses and discussions are proposed to explain the phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.