Abstract
The spiking activity of mammalian cold receptors is described by the Huber-Braun neuron model. Sweeping temperature as a control parameter across a biologically relevant range this model exhibits a complex bifurcation structure seen in the sequence of interspike intervals. The model’s distinctive feature is the interaction between a fast spike generating dynamics and a slow subthreshold oscillation. Viewing the spike generation as a cycle, the dynamics may also be modeled phenomenologically by two phases, one for the spike cycle and the second for the slow subthreshold oscillation. In fact, a phase model of temperature-dependent mammalian cold receptors was already proposed by Roper et al. (2000). Here we follow their approach and investigate to what extent this model is able to reproduce the bifurcation patterns of the Huber-Braun model. Special attention is paid to the tonic firing to bursting transition observed in the low temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.