Abstract

We present a new method, referred to as phase correlation imaging (PCI), to study cell dynamics and function through temporal phase correlation analysis. PCI offers label-free, high-performance, simple-design, as well as suitability for operation in a conventional microscopy setting. PCI works without the need for controlled or synchronized photoactivation and sophisticated acquisition schemes, and only involves taking a sequence of phase images. The PCI image incorporates information on the phase fluctuations induced by both Brownian motion and deterministic motion of intracellular transport across large scales. We employed spatial light interference microscopy (SLIM) recently developed in our laboratory to experimentally measure quantitative phase information which renders the thickness and refractive index of cellular components without adding contrast agents. The acquisition process is repeated to obtain time-lapse phase images. We calculate the correlation time at each pixel for acquired time-lapse phase images and obtain the correlation time map in space. By temporal correlation analysis, PCI reveals cell dynamics information, which is complementary to quantitative phase imaging itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call