Abstract

When phase-shifting digital holography with a continuous fringe-scanning scheme is implemented using a PC-based measurement system without any synchronous circuit, nonuniform phase-shifted interference fringes are captured because of the fluctuation in the image-capturing interval. To cope with the nonuniform phase shifts, a statistical generalized phase-shifting approach is employed. Because the algorithm is designed to use an arbitrary phase shift, the nonuniform phase shifts do not obstruct object-wave retrieval. Moreover, multiple interference fringes can be obtained in a short time owing to the continuous fringe-scanning scheme. However, the wavefront calculation method is not designed for sequentially recorded interference fringes. To use multiple interference fringes appropriately, we develop a least-squares wavefront calculation method combined with corrections for the initial phase and the direction of phase rotation. We verify the proposed method by numerical simulations and optical experiments. The results show that the object wave with the same initial phase can be correctly reconstructed by using both phase correction methods simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call