Abstract

Based on first-principle total-energy calculations, we have found that by applying an external electric field it is possible to control the magnetic state of graphite thin film with the rhombohedral stacking arrangement. When exposed to a moderate electric field normal to the film, the surface of a thin film of rhombohedral graphite undergoes a magnetic phase transition from the antiferromagnetic state to the ferromagnetic state. The polarized electron spin is primarily distributed in the bottommost layer of the film, which forms the interface with the negative electrode. The amount of polarized electron spin is calculated to be 0.067 μB/nm2. The ferromagnetic ordering with the characteristic distribution of the polarized electron spin opens the possibility of using graphite thin films in electronic devices with spin degree of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.