Abstract

In this letter, phase control of the Goos-Hänchen shifts of the reflected and transmitted probe light beams through a cavity containing four-level InGaN/GaN quantum dot nanostructure is theoretically discussed. In order to achieve the wave functions and their corresponding energy levels of the mentioned quantum dot nanostructure, Schrödinger and Poisson equations must be solved in a self consistent manner for carriers (here electron) in quantum dot. It is found that the coupling field, the pumping field as well as the cycling field can enhance the GH shifts of the reflected and transmitted probe beams. The effect of relative phase and the detuning of the probe light on the GH shifts of the reflected and transmitted probe beams are also investigated. We find that the GH shifts can be switched between the large positive and negative values by adjusting the controllable parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.