Abstract

In this article we proposed a new model based on carbon-nanotube quantum dot (CNT QD) nanostructure for controlling the Goos-Hanchen (GH) shifts in reflected and transmitted light beams. In our calculation we introduce the spin-orbit coupling parameter in the CNT QD nanostructure. Our results show that owing to the presence of spin-orbit coupling, Rabi frequency of magnetic field, coupling laser field and relative phase between applied fields, the enhanced GH shifts in reflected and transmitted light beams can be achieved. Moreover, we demonstrate that such enhanced GH shifts are simultaneously obtained for both reflected and transmitted light beams. At the end, we discuss the impact of intracavity thickness on the GH shift properties of reflected and transmitted light beams. We hope that our proposed model may be used for future developments based on CNT QD nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.