Abstract

Creeping flows govern many important physiological phenomena such as elevated interstitial fluid flows in tumors, glymphatic flows in the brain, among other applications. However, few methods exist to measure such slow flows non-invasively in optically opaque biological tissues in vivo. Phase-contrast MRI is a velocimetry technique routinely used in the clinic to measure fast flows in biological tissues, such as blood and cerebrospinal fluid (CSF), in the order of cm/s. Use of this technique to encode slower flows is hampered by diffusion weighting and phase error introduced by gradient hardware imperfections. In this study, a new PC-MRI technique is developed using stimulated echo preparation to overcome these challenges. Flows as slow as 1 μm/s are measured and validated using controlled water flow through a pipe at 4.7 T. The error in measured flow rate obtained by integrating the measured velocity over the cross-sectional area of the pipe is less than 10%. The developed method was also able to capture slow natural convection flows appearing in liquids placed inside a horizontal bore magnet. Monitoring the 4D velocity vector field revealed that the natural convection flows decay exponentially with time. This method could be applied in future to study creeping flows, e.g. in tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call