Abstract

Pore-network representations of permeable media provide the framework for explicit simulation of capillary-driven immiscible displacement governed by invasion-percolation theory. The most demanding task of a pore-network flow simulation is the identification of trapped defending phase clusters at every displacement step, i.e. the phase connectivity problem. Instead of employing the conventional adjacency list we represent the connectivity of a phase cluster as a tree accompanied by a set of adjacent non-tree edges. In this graph representation, a decrease in phase connectivity due to a pore displacement event corresponds to deletion of either a tree or a non-tree edge. Deletion of a tree edge invokes a computationally intensive search for a possible reconnection of the resulting subtrees by an adjacent non-tree edge. The tree representation facilitates a highly efficient execution of the reconnection search. Invasion-percolation simulations of secondary water floods under different wetting conditions in pore-networks of different origin and size confirm the efficiency of the proposed phase connectivity algorithm. Moreover, a systematic simulation study of runtime growth with increasing model size on regular lattice networks demonstrates a consistent orders-of-magnitude speed-up compared to conventional simulations. Consequently, the proposed algorithm proves to be a powerful tool for invasion-percolation simulations on large multi-scale networks and for extensive stochastic analysis of typical single-scale pore-networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.