Abstract

Polarized micro-Raman spectroscopy was applied to investigate the phase composition and transformation from the amorphous to the crystalline state, size effects, and the crystallographic orientation and antenna polarization effects on self-organized anodic TiO2 nanotubes (NTs). The morphological characteristics of the NTs were tailored by electrochemical anodization in both aqueous (phosphate buffer) and organic (ethylene glycol) electrolytes as well as in perchlorate/chloride-containing electrolytes. Postgrowth thermal annealing was confirmed to reduce markedly the organic and inorganic species encapsulated in the as-grown arrays and drive the transformation of the amorphous titania to nanocrystalline anatase. Crystallite size and shape effects as well as oxygen nonstoichiometry were investigated through the variation of the low-frequency Eg anatase mode for the TiO2 NT arrays produced in different electrolyte media, and the results were compared with the predictions of the phonon confinement model for a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.