Abstract

AbstractPolished ceramic products are currently the most popular in architectural decoration, but a significant amount of ceramic polishing waste (CPW) is produced during the preparation process. Determining how to handle the CPW is a pressing task for enterprises. This work investigated the feasibility of recycling CPW in porcelain tile, and its influence on the phase composition, microstructure, and properties of the ceramic body. The CPW was found to have a similar composition to the traditional ceramics and worked as a flux. The SiC within CPW began to decompose into SiO2 with CO2 generation at about 1100°C, resulting in a porous structure. Microstructure observation indicated that a high CPW sample produced sufficient liquid phase when fired at temperatures ≤1100°C, which was not only beneficial for mullite growth but also for matrix densification by the viscous flow mechanism. But a high‐content CPW caused the body to foam or even expand at temperatures >1100°C, thus significantly reducing mechanical properties. Finally, a series of porcelain tiles were successfully prepared with a CPW content of ≤30 wt% at a firing temperature of 1125‐1200°C. The results of this study are considered to be valuable for the utilization of CPW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.