Abstract

Developed in this study is a multifunctional material for simultaneous osseoinduction and drug delivery, potentially applicable in the treatment of osteomyelitis. It is composed of agglomerates of nanoparticles of calcium phosphate (CAP) with different monophasic contents. The drug-loading capacity and the release kinetics were investigated on two model drug compounds with different chemical structures, sizes, and adsorption propensities: bovine serum albumin and fluorescein. Loading of CAP powders with small molecule drugs was achieved by physisorption and desiccation-induced agglomeration of nanoparticulate subunits into microscopic blocks. The material dissolution rate and the drug release rate depended on the nature of the CAP phase, decreasing from monocalcium phosphate to monetite to amorphous CAP and calcium pyrophosphate to hydroxyapatite. The sustained release of the two model drugs was shown to be directly relatable to the degradation rate of CAP carriers. It was demonstrated that the degradation rate of the carrier and the drug release kinetics could be made tunable within the time scale of 1-2 h for the most soluble CAP phase, monocalcium phosphate, to 1-2 years for the least soluble one, hydroxyapatite. From the standpoint of antibiotic therapy for osteomyelitis, typically lasting for 6 weeks, the most prospective CAP powder was amorphous CAP with its release time scale for a small organic molecule, the same category to which antibiotics belong, of 1-2 months under the conditions applied in our experiments. By combining these different CAP phases in various proportions, drug release profiles could be tailored to the therapeutic occasion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call