Abstract

Oxidized Si(111) substrates were pre-structured by electron beam lithography and used as a substrate for the selective growth of three-dimensional topological insulators (TI) by molecular beam epitaxy. The patterned holes were filled up by the TI, i.e. Sb2Te3 and Bi2Te3, to form nanodots. Scanning electron microscopy and focused ion beam cross-sectioning was utilized to determine the morphology and depth profile of the nanodots. The magnetotransport measurements revealed universal conductance fluctuations originating from electron interference in phase-coherent loops. We find that these loops are oriented preferentially within the quintuple layers of the TI with only a small perpendicular contribution. Furthermore, we found clear indications of an conductivity anisotropy between different crystal orientations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.