Abstract
Quantum interference effects and resulting quantum corrections of the conductivity have been intensively studied in disordered conductors over the last few decades. The knowledge of phase coherence lengths and underlying dephasing mechanisms are crucial in understanding quantum corrections to the resistivity in different material systems. Due to the internal magnetic field and the associated breaking of time-reversal symmetry quantum interference effects in ferromagnetic materials have scarcely been explored. Below, we describe the investigation of phase coherent transport phenomena in the newly discovered ferromagnetic semiconductor (Ga,Mn)As. We explore universal conductance fluctuations in mesoscopic (Ga,Mn)As wires and rings, the Aharonov–Bohm effect in nanoscale rings and weak localization in arrays of wires, made of the ferromagnetic semiconductor material. These experiments allow to probe the phase coherence length Lϕ and the spin flip length LSO as well as the temperature dependence of dephasing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.