Abstract

Thin Ising films with nearest-neighbor ferromagnetic exchange in a bulk magnetic field H are studied in a L×L×D geometry, where at the opposite walls, given by the L×L surfaces, local magnetic fields H1, and HD act. While in previous work, the symmetric case H1=HD (leading to “capillary condensation”, when one applies the lattice gas terminology) as well as the antisymmetric case H1=−HD (leading to “interface localization transitions”) were studied, we focus here on the general ‘asymmetric’ case. Monte Carlo simulations are carried out and analyses based on thermodynamic integration methods are used to establish the phase diagrams and study the properties of the coexisting phases. A discussion is given why for the range of thicknesses that is explored (16≤D≤80 lattice spacings) this is the most suitable methodology. Restricting attention to cases where in the semi-infinite system a first-order wetting transition occurs, it is shown that the latter, due to confinement, is turned in a thin-film triple point. Above the triple point, narrow two-phase coexistence curves are found, which are the analog of prewetting transitions in the semi-infinite system. A comparison to related results for (symmetrical) polymer blends and (asymmetric) colloid-polymer mixtures is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.