Abstract
Tris(glycinato)chromium(III) monohydrate [Cr(C2H4NO2)3·H2O] crystals were grown through the slow solvent evaporation method. The crystals were studied by Fourier transform infrared (FTIR) and Raman spectroscopy at room temperature. The assignments of vibration modes were performed using the Density Functional Theory (DFT). Thermal analyses (TGA, DTA, and DSC), X-ray diffraction (XRD), and Raman were used to study the phase changes on the crystals under high- and low-temperature conditions. Temperature-dependent XRPD measurements were carried out in the interval of 473–12 K. Several changes were observed in the patterns, like the appearance of new peaks and the disappearance of peaks occurring within 373–393 K due to water loss. In addition, the Raman measurements were performed in the 423–10 K interval. Several changes on the inter and intramolecular vibration bands during the cooling, such as decreasing bands' intensities, the appearance of vibration modes, and discontinuities on the modes’ behavior, were observed. These spectral modifications occurred at about 370 K and within 120–220 K, thus, confirming that the crystals undergo two phase changes, one being structural and the other one conformational, respectively, at high- temperature and low-temperature conditions. Finally, thermal investigations corroborated the structural and vibrational results under high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.