Abstract

We discuss specific features of Te-based compounds that made them the best materials for the phase-change data storage. It is demonstrated that the phase-change recording is due to a switch of Ge atoms between octahedral and tetrahedral symmetry positions within the Te face-centered cubic lattice. It is this nature of the transition that makes the Te-based media fast and stable. The driving force for this transition is also discussed. The chapter is concluded by introduction of a concept of the super-resolution near-field structure (super-RENS) disc that allows to reduce a bit size well below the diffraction limit and makes 100 GB/disc storage a reality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.