Abstract

A thin nitride layer formed at the interface of a Ge–Sb–Te recording layer and a ZnS–SiO2 protective layer successfully suppresses the phenomenon that reflectivity or signal amplitude becomes markedly small due to repeated overwrites. Based on secondary ion mass spectrometry (SIMS) observations, the 5-nm-thick interface layer was found to restrain sulfur atoms in the ZnS–SiO2 layer from diffusing into the Ge–Sb–Te layer and from changing the optical characteristics of the layer. Among several nitride materials, germanium nitride (Ge–N) sputtered film is found to have the most suitable properties as an interface layer: high barrier effect and good adhesiveness with Ge–Sb–Te and ZnS–SiO2 layers. The optical disk having the Ge–N interface layer achieves more than 5×105 cycles of overwrites with almost no changes in signal amplitude, reflectivity and jitter based on DVD-RAM specifications. The disk shows no degradation such as cracking, peeling, and corrosion after exposure to accelerated environmental conditions of 90°C and 80% RH for 200 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call