Abstract

As DRAM technology is facing scalability limitations due to its excessive leakage power in nano-scale technologies, various non-volatile memory technologies have been emerged to replace it in memory hierarchy. Among these technologies, Phase Change Memory (PCM) is a promising technology for main memory due to its near-zero leakage power, higher density, non-volatility and soft error immunity. However, its major drawbacks, including high write energy and limited write endurance, have prevented its usage as a drop-in replacement of DRAM technology. In this paper, we propose a technique to swap data between memory lines with goal of reducing bit flips. The proposed swapping technique finds the best place to write a chunk of data among a limited set of lines to minimize number of bit flips. The proposed swapping operation works online i.e, does not require any data profiling. Moreover, it does not require major modifications of existing solutions and works only by the addition of a proposed circuitry. It is remarkable that, this technique is additive to various other architectures aiming at PCM lifetime enhancement. Experimental results carried out on a quad core CMP system show that the proposed technique prolongs PCM main memory lifetime by 48% which is achieved at the price of 1% and 2% overhead in read and write latencies respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.