Abstract
In this work, different phase change materials (PCMs) were stabilized in biochar and lignin by vacuum impregnation technique and later incorporated into gypsum panels in real building applications. We used three types of paraffin, with phase transition temperatures of 21, 27, and 31 °C, respectively, i.e., within the most common thermal comfort conditions in building applications and two bio-based porous matrices, lignin and biochar. In doing so, we aimed at producing and characterizing an environmentally friendly shape-stabilized material, to be easily integrated into gypsum-based building components. The obtained compounds were analyzed at various scales of investigations using Brunauer–Emmett–Teller (BET), Hot Disk, Fourier-Transform infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), thermal cycling, Differential Scanning Calorimetry (DSC), and Thermogravimetric (TGA) analyses, to adequately assess the composites' thermophysical performance and long-term stability. The obtained results highlight the promising thermal buffer capability of the shape-stabilized samples, particularly in the case of the paraffin with a melting temperature of 21 °C, which obtained the highest impregnation rate. In general, all the compounds tend to lose PCM during cycling. However, significant leakage was only found above 100 °C, therefore, the samples show a relatively stable behavior for applications within the most common local boundary conditions in the built environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.