Abstract

A three-dimensional steady state two-phase non-isothermal model which highly couples the water and thermal management has been developed to numerically investigate the spatial distribution of the interfacial mass transfer phase-change rate in the cathode side of a proton exchange membrane fuel cell (PEMFC). A non-equilibrium evaporation–condensation phase change rate was incorporated in the model which allowed supersaturation and undersaturation take place. The most significant effects of phase-change rate on liquid saturation and temperature distributions are highlighted. A parametric study was also carried out to investigate the effects of operating conditions; namely as the channel inlet humidity, cell operating temperature, and inlet mass flow rate on the phase-change rate. It was also found that liquid phase assumption for produced water in the cathode catalyst layer (CL) changed the local distribution of phase-change rate. The maximum evaporation rate zone (above the channel near the CL) coincided with the maximum temperature zone and resulted in lowering the liquid saturation level. Furthermore, reduction of the channel inlet humidity and an increase of the operation temperature and inlet mass flow rate increased the evaporation rate and allowed for dehydration process of the gas diffusion layer (GDL) to take place faster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.