Abstract

In this paper, melting of a phase change material (PCM) in a multi-tube heat exchanger (MTHX) is investigated. Water, as the heat transfer fluid (HTF), flows through the inner tube/tubes and the outer one while RT35 as the PCM fills the middle. The aim of this study is to investigate the effect of number of inner tubes as a geometrical parameter during charging process. Also consequences of increasing operational parameters including the HTF mass flow rate and inlet temperature are studied. In order to understand the effects of the proposed configurations, a comparison between double pipe and simple MTHX is carried out. Results show that as the inlet temperature increases melting process accelerates and complete melting time reduces, whereas, similar mass flow rate increase doesn't reduce the melting time to such an extent. By increasing the number of inner tubes from 1 to 4 in the shell side of the MTHX, melt region enlarges and its including vortices strengthens which leads to a dominated convective heat transfer and thus a higher melting rate. This increase in number of tubes leads to 29% reduction in melting time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.