Abstract
We consider a Hamiltonian system with slow and fast motions, one degree of freedom corresponding to fast motion, and the other degrees of freedom corresponding to slow motion. Suppose that at frozen values of the slow variables there is a non-degenerate saddle point and a separatrix on the phase plane of the fast variables. In the process of variation of the slow variables, the projection of a phase trajectory onto the phase plane of the fast variables may repeatedly cross the separatrix. These crossings are described by the crossing parameter called the pseudo-phase. We obtain an asymptotic formula for the pseudo-phase dependence on the initial conditions, and calculate the change of the pseudo-phase between two subsequent separatrix crossings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nonlinearity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.