Abstract

We report on the ground state of models for strongly correlated one-dimensional Fermi systems by means of theoretical studies of two-component atomic Fermi gases in highly anisotropic harmonic traps. In this context, we consider (i) the Gaudin-Yang model for a Luttinger liquid with repulsive interactions, including an analysis of the emergence of Wigner molecules in the 2k F → 4k F crossover, and (ii) the lattice Hubbard model yielding Luttinger liquid and Mott insulator or band-insulator phases for repulsive interactions and the Luther-Emery phase for attractive interactions, including in the former case an analysis of the role of disorder. Our calculations use novel versions of density and spin-density functional theory and a density-matrix renormalization-group technique. We also discuss preliminary results and future perspectives in the study of nonsymmetric two-component Fermi gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call