Abstract

Blends of chitosan with strongly crystalline polyamides (nylon-4 and nylon-6) and weakly crystalline polyamides (caprolactam/laurolactam and Zytel®) were investigated. Phase behavior, morphology, interactions with water, mechanical properties, and catalytic reactivity were studied. Films were made from formic acid solutions with the chitosan concentrations ranging from 5% to 95% (w/w). The 80% deacetylated chitosan is in the salt, neutral, or copper chelate form. All the blends have higher relative water contents than does the pure chitosan. Dry neutral chitosan shows a relaxation centered at approximately 90°C which is attributed to local motion. The phase behavior of the blends is influenced by preparation conditions such as the drying temperature. Characterization of blends by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) suggests partial miscibility of chitosan with nylon-4 and lack of miscibility in the remaining cases. Blending with nylon-4 enhances mechanical properties with marked antiplasticization in blends containing 90% chitosan. Catalytic activity of the chitosan is enhanced by blending with nylon-4. Salt and neutral forms of chitosan appear to be equally effective. © 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call