Abstract

We study the phase behavior of solutions consisting of positive and negative ions of valence z to which a third ionic species of valence Z>z is added. Using a discretized Debye-Hueckel theory, we analyze the phase behavior of such systems for different values of the ratio Z/z. We find, for Z/z>1.934, a three-phase coexistence region and, for Z/z>2, a closed (reentrant) coexistence loop at high temperatures. We characterize the behavior of these ternary ionic mixtures as function of charge asymmetry and temperature, and show the complete phase diagrams for the experimentally relevant cases of Z/z=2 and Z/z=3, corresponding to addition of divalent and trivalent ions to monovalent ionic fluids, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.