Abstract

In this work, we report a Density Functional Theory based study of phase behavior of lyotropic liquid-crystalline polymers under both good and varying solvent conditions in the presence of external electric or magnetic field. Our microscopic model for the good solvent case is based on the tangent hard-sphere chain with bond-bending potential to account for the chain stiffness; the variable solvent quality is modeled by adding attractive monomer-monomer interactions. The phase diagrams are constructed in three intensive variables (temperature, pressure, and field strength), and are characterized by the presence of critical and triple lines, which originate from the critical and triple points of the corresponding zero-field case. The merging of critical and triple lines results in the appearance of the "double critical" and "critical triple" points, already known from the earlier studies of the phase behavior of spin fluids in magnetic fields. The important difference of the present model from the spin fluids is due to the finite stiffness of the polymer chains (characterized by their persistence length), which adds an additional parameter controlling the morphology of the phase diagrams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call