Abstract
Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, the solubility of carbon monoxide, hydrogen, and nitrogen in n-dodecane were measured using a static equilibrium cell over the temperature range from 344.3 to 410.9 K and pressures to 13.2 MPa. The uncertainty in these new solubility measurements is estimated to be less than 0.001 in mole fraction. The data were analyzed using the Peng-Robinson (PR) equation of state (EOS). In general, the PR EOS represents the experimental data well when two interaction parameters (Cij and Dij) are used for each isotherm. The data suggest that the EOS interaction parameters are highly temperature dependent for the carbon monoxide and hydrogen systems and less so for the nitrogen system. Also a trend of increasing solubility with increased temperature and pressure is observed. A manuscript we have prepared for publication is attached which provides detailed technical information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.