Abstract
If solid surfaces exist beneath the visible clouds of the major planets, they may be expected to exist at depths and pressures at which the component gas mixtures solidify under their own weight. The elucidation of phase behavior in mixtures of light gases at very high pressures is therefore essential to the solution of the problem of deep atmosphere structures in these planets. Available experimental evidence suggests several possible extrapolations of the H2-He phase diagram to high pressures. These have been used to develop a structural model for a H2-He atmosphere. In this model, gravitational separation of coexisting phases results in a layered structure, and it is shown that masses of H2-rich solid can exist in dynamic and thermodynamic equilibrium with a fluid layer of equal density but higher He content. This model forms the basis of a new hypothesis for Jupiter's Red Spot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.