Abstract

The phase diagram of the prototypical two-dimensional Lennard-Jones (LJ) system, while extensively investigated, is still debated. In particular, there are controversial results in the literature with regard to the existence of the hexatic phase and the melting scenario. Here we study the phase behavior of two-dimensional range-limited LJ particles via large-scale numerical simulations. We demonstrate that at a high temperature, when the attraction in the potential plays a minor role, melting occurs via a continuous solid-hexatic transition followed by a first-order hexatic-fluid transition. The hexatic phase occurs in a density range that vanishes as the temperature decreases so that at low-temperature melting occurs via a first-order liquid-solid transition. The temperature where the hexatic phase disappears is well above the liquid-gas critical temperature. The evolution of the density of topological defects confirms this scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.