Abstract

AbstractGlycerol trioleate‐based ionic liquid microemulsions are promising biolubricant alternatives. This study presents the formation and the phase behavior of glycerol trioleate‐based ionic liquid microemulsions. Areas of the single‐phase domain were calculated to illustrate the phase‐forming capacities of the designed systems. The effects of ionic liquid anions and cations, oxyethylene groups’ number of surfactant, mass ratio of surfactant to co‐surfactant, chain length of co‐surfactant, and temperature on the phase behavior and phase‐forming capacities of glycerol trioleate‐based ionic liquid microemulsions were investigated using pseudo‐ternary phase diagrams. The results showed that the phase‐forming capacities of glycerol trioleate‐based ionic liquid microemulsions with different ionic liquids were Tf2N−‐based > PF6−‐based > BF4−‐based, OMIM+‐based > HMIM+‐based > BMIM+‐based > EMIM+‐based. The designed systems contained ionic liquid‐glycerol trioleate amphiphilic balance; thus, glycerol trioleate‐surfactant micelles achieved the maximum solubilization capacity for the ionic liquid when the surfactant had approximately five oxyethylene groups with a surfactant to co‐surfactant mass ratio of 4:1. Moreover, increasing the temperature and the aliphatic chain length of co‐surfactant from C2 to C6 enhanced the ability of glycerol trioleate and ionic liquids to form microemulsions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call